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Observations of seafloor morphologies and environments made before and after the 2011 Tohoku-oki

earthquake reveal open fissures, generated during the earthquake, where the fault trace is interpreted

on seismic profiles to intersect the seafloor. Anomalously high heat flow was observed at a landward-

dipping normal fault in August 2011, five months after the earthquake, but by August 2012 heat flow

normal fault ruptured during the 2011 earthquake. These seafloor observations and measurements

demonstrate deformation that was both extensional and anelastic within the overriding continental

plate during the 2011 earthquake. Seismic profiles as well as seafloor bathymetry data in the tsunami

source area further demonstrate that landward-dipping normal faults (extensional faults) collapse the

continental framework and detach the seaward frontal crust from the landward crust at far landward

from the trench. The extensional and anelastic deformation (i.e., normal faulting) observed in both

seafloor observations and seismic profiles allows the smooth seaward movement of the continental

crust. Seaward extension of the continental crust close to the trench axis in response to normal faulting

is a characteristic structure of tsunami source areas, as similar landward-dipping normal faults have

been observed at other convergent plate margins where tsunamigenic earthquakes have occurred. We

propose that the existence of a normal fault that moves the continental crust close to the trench can be

considered one indicator of a source area for a huge tsunami.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Interplate earthquakes and tsunamis are frequently generated
in the Japan Trench (Yamanaka and Kikuchi, 2004), where the
Pacific plate is subducting beneath the Japan Arc at the high
convergence rate of 8.6 cm/yr (DeMets et al., 1990). The rupture
areas of many interplate earthquakes recorded before the 2011
Tohoku-oki earthquake in this convergent plate margin were
limited to small rupture segments. However, the 2011 Tohoku-oki
earthquake (Mw 9.0) ruptured a wide area along the plate
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interface (�450 km in the trench-parallel direction; Ide et al.,
2011) and generated a particularly large tsunami (Fujii et al.,
2011; Maeda et al., 2011). On the basis of geodetic and geophy-
sical data as well as tsunami records, large slip along the plate
interface (�60 m) was estimated to have occurred near the
trench off Miyagi (Fig. 1; Maeda et al., 2011; Ito et al., 2011;
Sato et al., 2011; Kido et al., 2011; Fujiwara et al., 2011; Lay et al.,
2011). The region where the rupture propagated to the trench
corresponds to the generation area of the huge tsunami (Fujii
et al., 2011; Maeda et al., 2011). Therefore, large plate-boundary
slip near the trench seems to have been a primary mechanism of
tsunami generation in the 2011 earthquake, although seafloor
slumping must also be considered as one of the tsunami-
generating mechanisms (e.g., Kawamura et al., 2012; Grilli et al.,
2012). In other subduction zones, coseismic slip propagating to
near the trench is also thought to contribute to tsunami genera-
tion (Kanamori and Kikuchi, 1993; Henstock et al., 2006; Gulick
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Fig. 1. Index maps for the 2011 Tohoku-oki earthquake in the Japan Trench (JCG, JAMSTEC, 2011). (a) Blue and white contour lines are subsidence and uplift, respectively,

estimated from tsunami inversion (Fujii et al., 2011), with contour intervals of 0.5 m (subsidence) and 1.0 m (uplift). Blue arrows indicate dynamic seafloor displacements

observed at seafloor observatories (Kido et al., 2011; Sato et al., 2011). Red lines are locations of seismic profiles (SR101, MY101, and MY102) shown in Fig. 2. Stars indicate

diving sites and are labeled with dive numbers of pre-earthquake observations (blue numerals) and post-earthquake observations in 2011 (red numerals) and in 2012

(orange numerals). Background heat flow values measured before the 2011 earthquake are displayed as colored dots (Yamano et al., 2008; Kimura et al., 2012).

(b) Enlarged map around the diving sites, corresponding to the yellow rectangle in panel (a). Red dashed lines indicate seafloor traces of normal faults (i.e., ridge

structures). Yellow dashed lines indicate estimated locations of the backstop interface. The white dashed line indicates the boundary of the area of significant seafloor

uplift (49 m uplift) and also the tsunami generation area (Fujii et al., 2011), corresponding to the reddish-brown area in panel (a). Observations made during the post-

earthquake dives are described in panel (b).
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et al., 2011). Seismological studies (e.g., Koper et al., 2011) have
demonstrated that large slip along the shallow plate interface
near the trench is a characteristic of tsunamigenic earthquakes
that produce anomalously large tsunamis relative to the seismic
energy (Kanamori, 1972). However, the mechanisms of large
displacement along the plate interface near the trench are not
well understood. Prior to the 2011 Tohoku-oki earthquake, the
plate interface near the Japan Trench was thought to be too weak
to accumulate strain and, because of this presumed weak lithol-
ogy, the frontal prism was expected to deform aseismically (Kerr,
2011).

As a mechanism of the large coseismic displacement near the
trench during the 2011 earthquake, McKenzie and Jackson (2012)
demonstrated that the release of gravitational potential energy
can induce a pop-up movement of the frontal prism. Because
tectonic erosion has generated a steep seafloor slope (�81) near
the trench (Von Huene et al., 2004), the wedge is gravitationally
unstable, and gravitational potential energy could thus easily
have been released during the earthquake (McKenzie and Jackson,
2012; Kawamura et al., 2012). Indeed, seafloor slumping due to
gravitational instability that occurred during the 2011 earthquake
has been clearly observed at the trench axis (Fujiwara et al.,
2011; Kodaira et al., 2012). Pore pressure increasing due to clay
dehydration is further proposed for low shear strength along the
plate interface allowing runaway slip to the trench (Kimura et al.,
2012).

On the basis of seismic profile acquired at the tsunami source
area, Tsuji et al. (2011) proposed that large displacement along
the plate interface near the trench generated a tensile state of
stress within the geological units above the plate interface,
resulting in rupture along normal faults. Such normal faulting is
common at erosional margins such as the Tohoku margin (e.g.,
Von Huene et al., 2004). During the 2011 earthquake, normal
faulting aftershocks generated in the overriding plate (Asano
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et al., 2011) are evidence of extensional activity there. Further-
more, geodetic data (Ito et al., 2011; Kido et al., 2011) also
indicate that significant extension was generated coseismically
within the overriding plate close to the trench. Therefore, the
geological structures and dynamic activity within the overriding
plate are important for understanding both the mechanisms of
large displacements along the plate interface and the mechanisms
of tsunami generation.

In this paper, we identify a series of faults in seismic reflection
profiles acquired within and outside of the tsunami source area
and examine dynamic changes of the fault traces on the seafloor
by comparing observations made during submersible dives before
and after the 2011 earthquake, in order to identify characteristic
geological structures and dynamic fault activity within the over-
riding plate in the tsunami source area. During the seafloor
observations, we also repeatedly measured heat flow to evaluate
the activity of the fault system. These are the first time-lapse
observations of the seafloor and the first heat flow measurements
made in the tsunami generation area of the 2011 earthquake.
Because our survey area includes the region of largest vertical
displacement in the vicinity of the source region of the Tohoku-
oki earthquake (Fig. 1) (Fujii et al., 2011; Hayashi et al., 2011;
Tsuji et al., 2011; Ito et al., 2011), these shallow faults are most
likely related to the tsunami generation mechanism. Because the
long-period slip near the trench that resulted in the huge tsunami
generated almost no seismic energy (Koper et al., 2011), the
tsunamigenic rupture process near the trench cannot be clearly
determined by using only onshore seismometer data. However,
direct observations and measurements of the seafloor fault traces
identified on seismic reflection profiles can potentially provide
direct evidence of the generation mechanism of the huge tsunami.
Further, we compare the geological structures in the Japan Trench
with those of other convergent plate margins and discuss the
global implications of our proposed rupture mechanisms leading
to tsunami generation.
2. Methods

2.1. Seismic reflection data

The geologic structure in the vicinity of the most strongly
uplifted area in the source region of the 2011 Tohoku-oki earth-
quake (Fig. 1) was inferred from seismic data collected prior to
the event. Multi-channel seismic reflection data were acquired
by the R/V Kairei (Japan Agency for Marine-Earth Science and
Technology) in 1997 (cruise KR97-07) and 1999 (cruise KR99-08)
(Tsuru et al., 2002). Both of these seismic surveys used a �200-L
(�12,000 in3) airgun source fired every 50 m and a 4-km receiver
array with 156 channels. The record lengths were 13.5 s. In this
study, we used the data from line SR101 (cruise KR97-07) and
lines MY101 and MY102 (cruise KR99-08) in the northern half of
the rupture region (38–391N, red lines in Fig. 1). The location of
line MY102 corresponds to the region of significant seafloor uplift
as estimated by tsunami inversion (Fujii et al., 2011; Tsuji et al.,
2011). The locations of lines MY101 and SR101 are northern edge
and outside of the seafloor uplifted region, respectively.

Seismic processing (Yilmaz, 2001) included trace editing,
multiple suppression, deconvolution, velocity analysis, stacking,
post-stack migration, and spherical divergence correction. Fig. 2
shows the seismic profiles converted to depth on the basis
of stacking velocities. Seismic velocities and accurate depths
of reflection events were difficult to determine for the deeper
geological units because of the limited streamer length. Therefore,
to convert time to depth in the deeper part of the profiles,
we used P-wave velocities derived from wide-angle refraction
analysis (Murauchi and Ludwig, 1980; Suyehiro and Nishizawa,
1994). For seismic line SR101, prestack-depth migration was
applied (Tsuru et al., 2002).

2.2. Seafloor observations

Before the earthquake, we used the manned submersible
Shinkai 6500 (e.g., cruise YK08-06 in 2008) to deploy seafloor
observatories close to fault traces identified on seismic reflection
profiles (Ito et al., 2011; Tsuji et al., 2011; Fig. 1b). After the
earthquake (in June and August 2011, and July and August 2012),
we revisited all of the pre-earthquake dive points in the manned
submersible (cruises YK11-06E and YK12-13) or with a deep-tow
camera system (cruises YK11-04E and YK12-12). Because of
frequent aftershocks generated around the diving sites along the
MY102 transect (Sites 3E and 3W in Figs. 1 and 2) shortly after the
2011 earthquake (August 2011), we used the deep-tow camera
system to investigate those sites instead of the manned submer-
sible. In August 2012, we were able to dive to Site 3E (a region of
significant seafloor uplift) in the manned submersible.

For our post-earthquake observations, we tried to dive along
the same tracks used for the pre-earthquake observations in order
to evaluate changes to the seafloor environment and morphology
along those tracks. Because some of the diving stations had moved
several tens of meters during the 2011 earthquake (Fig. 1a; Ito
et al., 2011; Sato et al., 2011), we needed to take into account the
seafloor movements in order to follow the same diving tracks for
our post-earthquake observations. Comparison of the seafloor
fault traces before and after the earthquake (Figs. 3–6) revealed
dynamic changes to the seafloor morphology and environment
caused by the 2011 Tohoku-oki earthquake.

After the earthquake, to characterize the seafloor deformation
in the wider region of tsunami generation, we undertook dives at
two new sites (Sites 2E and 4W in Fig. 1b) that had not been
visited before the earthquake. These sites are also located along
seafloor traces of dominant faults, identified on seismic reflection
profiles as a backstop interface (Site 2E) and a landward-dipping
normal fault (Site 4W).

2.3. Heat flow measurements

Along with the post-earthquake seafloor observations, exten-
sive measurements of heat flow were made at the fault traces.
Heat flow measurements provide important constraints on the
dynamics of fault activity. Because fluids from considerable depth
pass through the fault plane (open fracture) generated by a
dynamic fault rupture, the degree of fault activity as well as the
rupture mechanics directly influence the heat flow measured
at overlying seafloor fault traces. Previous studies (Ranero et al.,
2008; Davis et al., 2006; Kawagucci et al., 2012; Davis and
Villinger, 2006; Solomon et al., 2009; Saffer and Tobin, 2011)
have demonstrated a clear relation between seismicity and fluid
movement resulting in a temperature anomaly. Frictional heat
due to fault rupture also increases heat flow, but that effect is
minimal at the seafloor because of the low effective stress across
the shallow fault plane. Although changes in seafloor morphology
in the submersible observations (e.g., open fissures) constitute
direct evidence of dynamic activity, they are often affected by
shallow activity such as seafloor slumping. Heat flow data can be
used to link seafloor observations with deep structural activity.

Since repeat measurements of heat flow were made at the
same stations in 2011 and 2012 (Fig. 3g and h), we can evaluate
the timing of fault activity from the heat flow variation after the
2011 earthquake. Following the earthquake, as fault activity
decreased, heat flow at the seafloor fault trace would also
decrease. Measured heat flow values at some geologic feature



Fig. 2. Reflection seismic profiles obtained in the central part of tsunami source area (line MY102 in panels f–h), at its northern edge (line MY101 in panels c–e), and its

outside (line SR101 in panels a, b). Original profiles of (a) line SR101, (c) line MY101, and (f) line MY102. Composite seismic reflection profiles with geological

interpretations of (b) line SR101, (d) line MY101, and (g) line MY102 (Tsuji et al., 2011). Red arrows in panel (d) and (g) indicate seafloor displacements (Ito et al., 2011;

Kido et al., 2011; Sato et al., 2011). Enlarged profiles around (e) Site 2W on line MY101, and (h) Site 3W on line MY102. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)
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Fig. 3. (a) Diving tracks on seafloor bathymetry at Site 3W. Stars indicate locations of seafloor images displayed in this figure. The white dashed line indicates the location

of the interpreted fault. (b–e) Photographs of the cliff generated by normal faulting at Site 3W (b, d) before and (c, e) after the earthquake. (f) Diving tracks on seafloor

bathymetry at Site 4W. (g, h) Photographs at Site 4W taken in (g) 2011 and (h) 2012, showing heat flow measurements being made at the same location by SAHF probe.
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(e.g., an open fissure) that are low and constant in repeated
measurements (in both 2011 and 2012) would suggest that
the geologic feature is related to some small-scale (regional)
phenomenon.

The vertical thermal gradient was measured by inserting a
Stand-Alone Heat Flow (SAHF) probe into the seafloor by using the
arms of the manned submersible. The SAHF probe is 60 cm long
with five thermistors mounted at intervals of 11–12 cm along the
probe. We usually measured thermal gradients over �20 min at
each measurement station. However, at two measurement sta-
tions within Site 1E (Fig. 1), we measured the thermal gradient
over �48 h to obtain heat flow values with higher accuracy.

In the laboratory, we measured the thermal conductivity of the
mudstone and core samples obtained at almost all of the heat
flow measurement stations. The measured thermal conductivity
ranged from 0.68 to 0.91 W/mK. In this study, we used 0.88 W/mK
as the thermal conductivity to be consistent with a previous heat-
flow study (Yamano et al., 2008) in this region. From the thermal
gradient (mK/m) and the thermal conductivity (W/mK), we
calculated heat flow values (mW/m2) at each measurement point
(Table 1, Fig. 7).
3. Results and interpretation

3.1. Fault characteristics observed in seismic reflection profiles

On all seismic reflection profiles acquired across the Japan
Trench (Fig. 2), we identify the subducting Pacific Plate and the
plate interface as strong reflections. Several faults are interpreted
to branch up from the plate interface. However, the reflective
characteristics of the fault system within the overriding plate are
different between seismic profiles acquired within and outside of
the tsunami source area. Features related to the backstop inter-
face and underthrusting sequence especially differ between the
seismic profiles from the two areas (Fig. 2).
3.1.1. Central part of the tsunami source region (line MY102)

On the seismic reflection profile closest to the tsunami source
area off Miyagi (line MY102 in Figs. 1, 2f and g), a large landward-
dipping normal fault within the continental crust is located �40 km
landward from the trench axis (Tsuji et al., 2011). Several additional
normal faults can be identified close to this fault. Accumulated



Fig. 4. (a) Diving tracks on seafloor bathymetry at Site 3E. The white dashed line indicates the location of the interpreted fault. Stars indicate locations of seafloor

photographs displayed in panels (b)–(f). (b) Photograph of an open fissure representative of those commonly observed after the earthquake. (d) Post-earthquake

observations revealed open fissures along the interpreted fault trace where (c) clam colonies were observed before the earthquake. (e) Clam colonies collapsed during the

2011 earthquake. (f) Only one clam colony was observed at this site after the earthquake, but all clams were dead.
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displacement on the large normal fault is significant; the offset of
the Cretaceous sequence is estimated to be 800 m, and the ridge
at the seafloor is �150 m high (Fig. 2h). The difference between
the smaller seafloor and the larger basement displacements may
reflect the accumulated offset of multiple earthquakes. Further-
more, the existence of a steep cliff or escarpment along the fault
trace at the seafloor (Fig. 3b) indicates that the normal fault is
active (Tsuji et al., 2011). The chemical composition of the water
at the seafloor along seismic line MY102 (Fig. 2f), measured after
the earthquake, demonstrates that seepage from relatively deep
units occurred only on the landward side of the normal fault
(Kawagucci et al., 2012), suggesting that the fault acts as a hydro-
logical boundary that divides the continental margin framework.

Although we cannot clearly identify reflections from the
deeper part of this fault, the large displacement along the normal
fault (�800 m) suggests that it branches up from the top of the



Fig. 5. (a) Diving tracks on seafloor bathymetry at Site 2W. Stars indicate locations of seafloor photographs displayed in panels (b)–(f). (b) Photograph of an open fissure

representative of those commonly observed after the earthquake. (d) An open fissure was observed during post-earthquake observations where (c) no fissure had been

before the earthquake. (g, h) Photographs taken in (g) 2011 and (h) 2012 showing the heat flow measurements being made at the same location by SAHF probe.
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underthrusting sequence or plate interface (�5 km deeper than
the continental crust surface). Indeed, Conin et al. (2012) showed
that normal faulting along a fault branched from a plate interface
(i.e., a landward-dipping normal fault) is possible if the friction
along the seaward plate interface is low during the coseismic
rupture.

On the southern side of line MY102 (Fig. 1b), several seafloor
ridges oriented parallel to the trench axis and attributable to this
normal fault displacement are located where the seafloor slope
steepens seaward. Seismic reflection data acquired after the 2011
earthquake indicate that the landward-dipping normal fault runs
beneath the ridge structure observed on the southern side of line
MY102, and as such, is a prominent structure in the tsunamigenic
region. Numerous normal-fault aftershocks in the overriding plate
(Asano et al., 2011) further indicate that the extensional faults
imaged on the seismic profile ruptured during the 2011
earthquake.

The 2011 Tohoku-oki earthquake caused considerable hori-
zontal seafloor displacement (Fujiwara et al., 2011) and extension
around the large normal faults (Ito et al., 2011); one seafloor
observatory was moved 450 m seaward of the normal fault, and
another one on the landward side of the fault was moved �30 m
in the seaward direction (Fig. 2g). Ruptures on a series of normal
faults account for the large extensional stress between these two
observatories (extensional strain 410–3; Ito et al., 2011). Because
the dip angle of the normal faults (o451) is not steep for a normal



Fig. 6. (a) Diving tracks on seafloor bathymetry at Site 1E. The white dashed line indicates the location of the interpreted fault. Stars indicate locations of seafloor images

displayed in panels (b)–(f). (b) Photograph of an open fissure representative of those commonly observed after the earthquake. (d) Open fissure seen during post-

earthquake observations where (c) a clam colony (�1 m wide) was observed before the earthquake. (e, f) Photographs taken in (e) 2011 and (f) 2012, showing the heat

flow measurements at the same location by SAHF probe. (g) Dive track on seafloor bathymetry at Site 3E. The star indicates the location of (h) a seafloor photograph

showing a steep cliff.
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Table 1
Heat flow values measured at Sites 1E, 2W, 3E, and 4W.

Position Lat. Lon. Dep. Dive Date Time Thermal Gradient Heat flow

(m) (mK/m) (mW/m2)

Site 1E: 391N backstop interface
1E-1 39–6.3315 143–53.5589 5348 #1254 Aug. 01, 2011 13:58 61.02370.045306 53.7

#1308 Aug. 15, 2012 14:41 60.46170.62473 53.2

1E-2 39–6.5602 143–53.8611 5342 #1255 Aug. 02, 2011 12:49 39.46375.0253 34.7

#1309 Aug. 17, 2012 13:14 38.68071.9993 34.0

1E-3 39–6.5602 143–53.8611 5342 #1255 Aug. 02, 2011 12:49 43.74373.0346 38.5

1E-4 39–6.3433 143–53.6102 5346 #1307 Aug. 13, 2012 13:54 55.64770.37152 49.0

1E-5 39–6.3436 143–53.5621 5346 #1307 Aug. 13, 2012 14:42 46.89970.018815 41.3

Site 2W: 38.51N small landward-dipping normal fault
2W-1 38–39.2672 143-36.0120 3243 #1259 Aug. 10, 2011 12:09 61.49970.5785 54.1

#1312 Aug. 21, 2012 12:20 68.04270.55445 59.9

#1312 Aug. 21, 2012 12:40 64.05471.6427 56.3

2W-2 38–39.3022 143-35.7381 3213 #1312 Aug. 21, 2012 14:37 98.53570.84205 86.7

2W-3 38–39.3350 143-35.3686 3230 #1312 Aug. 21, 2012 15:35 104.1571.5245 91.7

Site 3E: 381N reverse fault
3E-1 38-12.3686 143-47.0306 5775 #1311 Aug. 19, 2012 14:15 33.16270.36437 29.2

3E-2 38-12.5906 143-47.0822 5738 #1311 Aug. 19, 2012 15:30 26.95970.89856 23.7

Site 4W: 37.51N landward-dipping normal fault
4W-1 37–44.7583 143-17.1579 3551 #1257 Aug. 5, 2011 14:31 108.5571.0035 95.5

#1257 Aug. 5, 2011 14:31 122.2472.1147 107.6

#1310 Aug. 18, 2012 15:57 58.65270.53338 51.6

#1313 Aug. 22, 2012 14:27 54.25171.8163 47.7

4W-2 37–44.2123 143-17.0566 3585 #1260 Aug. 12, 2011 12:08 46.41271.5418 40.8

#1313 Aug. 22, 2012 12:55 37.133717.788 32.7

4W-3 37–44.4354 143-17.0903 3582 #1260 Aug. 12,2011 12:55 44.482711.128 39.1

#1313 Aug. 22, 2012 13:38 39.48572.491 34.7

4W-4 37–44.5421 143-17.0554 3566 #1257 Aug. 5, 2011 11:40 91.64977.5792 80.7

4W-5 37–44.3662 143-16.9859 3577 #1261 Aug. 13, 2011 10:29 43.58172.426 38.4

4W-6 37–44.2447 143-17.0322 3585 #1310 Aug. 18, 2012 13:25 58.73270.59495 51.7

4W-7 37–44.7464 143-17.1697 3553 #1313 Aug. 22, 2012 15:14 58.23572.1314 51.2
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fault, horizontal extension can occur with relatively small dis-
placements along these faults. Moreover, the traces of the large
normal faults coincide with the landward edge of the region of
significant seafloor uplift (Fujii et al., 2011) and the zone of large
displacement (Maeda et al., 2011; Iinuma et al., 2012) (Fig. 1b).
These observations suggest that extensional features are domi-
nant in the region where the large normal faults are observed
(�40 km landward from the trench) to be associated with the
large slip along the plate interface near the trench. Although in an
analysis based on differential seafloor bathymetry data, Kodaira
et al. (2012) recently reported almost no extension in the region
of the normal faults, the resolution of their analysis was lower
than 20 m on the landward side of the normal faulting, where the
seafloor slope is not steep (Fig. S2 in Kodaira et al. (2012)). From
the differential seafloor bathymetry data, therefore, it is difficult
to evaluate ruptures along the series of normal faults.

For the vertical displacement, the seafloor seaward of the huge
normal fault has been uplifted by �5 m (Ito et al., 2011) and the
landward seafloor has been uplifted by �3.9 m (Kido et al., 2011)
(Fig. 2g). Since one movement of the normal fault cannot explain
the magnitudes of both the vertical (�1.1 m) and horizontal
(420 m) relative displacements between these two stations, a
number of normal faults distributed around the large normal fault
are also likely to have ruptured during the earthquake and thus to
have also contributed to the significant horizontal extension in
this region.

Several additional faults, including the backstop interface,
which is interpreted as the boundary between an accreted
unconsolidated sequence (or soft fractured sequence) on the
seaward side and a less-deformed Cretaceous sequence (with
greater strength) on the landward side, are also visible in this
section (von Huene et al., 1994; Tsuru et al., 2002; Fig. 2g).
Reflections observed landward of the backstop interface suggest
that a sequence has been underthrust beneath the interpreted
Cretaceous sequence (Fig. 2g), similar to lens structures observed
at other convergent margins (Ranero and von Huene, 2000;
Ranero et al., 2000). The consolidated Cretaceous sequence (i.e.,
continental crust) covering these soft underthrusting sediments
would be expected to generate overpressure within the unconso-
lidated sequence because of compaction equilibrium. Further-
more, clay dehydration would also contribute to overpressure
around the plate interface (Kimura et al., 2012). This high pore
pressure might weaken coupling along the plate interface.

A reverse fault can be interpreted to exist at the seafloor slope
break between the backstop interface and the large normal fault
(�20 km from the trench axis; Site 3E in Fig. 2f). In the future,
this fault may act as a backstop interface, because an under-
thrusted sequence is identified on the footwall of this fault and
because the fault imaged on seismic line MY102 is at the southern
extension of the backstop interface observed in the northern
region (yellow dashed line in Fig. 1b).
3.1.2. Northern edge of the tsunami source area (line MY101)

On a seismic reflection profile in the northern edge of the
tsunami source area (line MY101, Figs. 1, 2c and d), the fault
distribution is different from that off Miyagi (line MY102; Fig. 2f
and g). The backstop interface and the underthrusted sediments
are clearly imaged beneath line MY101. Several normal faults can
be identified along line MY101, but the total amount of displace-
ment of each normal fault is less than that along line MY102 (in
the central part of the tsunami source area).

Seaward-dipping normal faults, possibly generated by sub-
marine landslides, are developed around the backstop interface.
At the backstop interface, where the margin framework rock is in
contact with the frontal prism, it is common to see a steeper slope



Fig. 7. Time variance of heat flow measured at (a) Site 4W, (b) Site 3E, (c) Site 2W, and (d) Site 1E. (a) Although high heat flow was measured at the landward-dipping

normal fault just after the 2011 earthquake, the heat flow decreased to a normal value in 2012. (b) Heat flow values measured at an open fissure above the reverse fault

were low compared to those obtained at other measurement sites. (c) Heat flow was constant or increased at the buried landward-dipping normal fault at the northern

edge of the tsunami source area. (d) Heat flow was the same in 2011 and 2012 at the backstop interface at the outside of the tsunami source area.
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at the edge of the continental framework rock because of the
greater strength of the continental framework (yellow dashed line
in Fig. 1b). Therefore, seafloor slumping may occur frequently at
the steep slope at the backstop interface. Submarine sliding of
sediment masses represented by the seaward-dipping faults may
have contributed to the tsunami generation (Kawamura et al.,
2012), even without any large displacement along the plate
interface in this northern part of the rupture area.
3.1.3. Outside of the tsunami source area (line SR101)

Fault characteristics observed in the northernmost profile SR101
(Figs. 1, 2a and b) are similar to those in line MY101. However, the
horizontal length of the soft frontal prism (from trench axis to
backstop interface) is longer than on the southern transects (lines
MY101 and MY102), and the backstop interface (i.e., front of the
continental crust) is farther landward (Tsuru et al., 2002). The
greater width of the sedimentary prism (greatly eroded continental
crust) may be related to the location of this seismic line at the
outside of the tsunami generation area, as described later. Along
seismic line SR101 (Fig. 2a and b), we can identify landward-
dipping normal faults distributed on the continental crust surface,
but displacement on these faults has not significantly deformed the
seafloor, indicating that they are relatively inactive.

3.2. Seafloor observations and heat flow

3.2.1. Landward-dipping normal fault in the central part of the

tsunami source area (Sites 3W and 4W)

Seafloor observations before the 2011 earthquake demon-
strated that the seafloor ridge associated with the large normal
fault in the source region of the 2011 tsunami (Site 3W in Fig. 1b)
is a near-vertical continuous scarp that is overhanging in places
(Tsuji et al., 2011) (Fig. 3b). The hard, lithified sediment of the
scarp indicates that the deep lithology crops out there as a result
of the normal fault displacements. After the 2011 earthquake, the
seafloor was covered with layers of soft diatomaceous sediments
and greenish fluff floating just above the seafloor (Fig. 3c and e).
These sediments were presumably derived from the seafloor slope
landward of the ridge and deposited during or after the earth-
quake, because before the earthquake, the seafloor was covered by
gravels from the scarp (Fig. 3b and d). Because of aftershock
activity around this site (3W), manned submersible dives were not
possible in 2011. However, manned submersible dives were
undertaken further south along the seafloor trace of the normal
fault at Site 4W (Fig. 1b). Therefore, we measured heat flow along
the interpreted normal fault trace at Site 4W (Fig. 3g and h).

Heat flow values measured five months after the earthquake at
Site 4W ranged from 33 to 108 mW/m2 (Figs. 3g, h and 7a).
Although heat flow was measured at an undisturbed location on
the seafloor (i.e., a location that was not fissured), the high end of
this heat flow range is significantly greater than the background
values measured before the earthquake (20–40 mW/m2; Fig. 1a;
Yamano et al., 2008, 2010), suggesting that seepage had occurred
along the normal fault as a result of dynamic rupture of the fault.
Heat flow was also measured within and adjacent to some
identified bacterial mats (white-colored spots), but we did not
observe significant differences in heat flow values between those
measured within and outside the bacterial mats.

The spatial variation of heat flow values at Site 4W (�2 km
horizontally; Table 1) can be roughly explained by the distance of
each measurement site from the fault scarp. We confirmed that the
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site where the highest heat flow was measured was near (o80 m
from) the cliff. Because the landward-dipping normal fault should
extend beneath the flank of the cliff, the sites with the highest heat
flow values (Fig. 3f and g) are those near the seafloor trace of the fault.

Markers deployed during the collection of the heat flow
measurements in 2011 allowed repeat measurements to be made
at the same locations (o1 m error) in 2012 (Fig. 7a). In August
2012 (17 months after the 2011 earthquake), heat flow at the
measurement station where the highest heat flow value had been
observed in 2011 (�108 mW/m2; Fig. 3g) had decreased to
the normal background value (�58 mW/m2; Fig. 3h). The time
variation of the heat flow values clearly suggests impulsive fluid
movement along the normal fault during the 2011 earthquake.

3.2.2. Reverse fault (future backstop interface) in the central part of

the tsunami source area (Site 3E)

Prior to the earthquake, chemosynthetic communities were
observed along the reverse fault seafloor trace (Site 3E in Fig. 1b),
suggesting seepage along the fault zone (Tsuji et al., 2011) (Fig. 4c).
Our post-earthquake observations revealed open fissures (o3 m
wide) along the interpreted fault trace (parallel to the strike of the
fault; Fig. 4d) where clam colonies had been observed before the
earthquake (Fig. 4c). These fissures were not observed before the
earthquake. Because no other large earthquake occurred between
the 2008 and 2011 seafloor observations and because no large
aftershock was observed near the frontal region on the seaward
side of the large normal fault (Obana et al., 2012), we consider the
2011 earthquake to be the most likely cause of these fissures.
Furthermore, the seafloor geodetic data (Ito et al., 2011, in press;
Iinuma et al., 2012) indicate no significant seafloor displacement
around Site 3E just before and after the 2011 earthquake, suggest-
ing that the fissures were generated during the mainshock. The
configuration of almost all of the dead Calyptogena (thermogenic
bivalves) found adhering to open cracks or under fallen rocks
suggests intensive seafloor sediment flow (Fig. 4e).

On the basis of the seafloor morphology and fault geometry
identified from seismic profiles near Site 3E, we previously inter-
preted this fault as a reverse fault or a future backstop interface
(Fig. 2g; Tsuji et al., 2011). However, during the post-earthquake
seafloor observations, we found no evidence of reverse fault
displacement and instead detected only extensional features. It
is possible that the open fissures were generated by seafloor
landsliding, but in our observations, including in the deep-tow
sub-bottom profiler surveys, we could not find clear evidence of
small-scale submarine landsliding at this site.

Heat flow values measured at an open fissure of Site 3E in
August 2012 were significantly low (�25 mW/m2) compared with
heat flow at the other observation sites (Fig. 7b) and lower than
the background value (Yamano et al., 2010), even though it is
probable that the open fissure was formed during the 2011
earthquake and clam colonies suggesting fluid seepage were
observed before the earthquake. Because we observed dead clam
colonies during the 2012 observations (Fig. 4f), seepage along the
fault may have decreased after the 2011 earthquake. Because the
stress state within the overriding plate was abruptly changed from
compression to extension during the 2011 earthquake (Tsuji et al.,
2011; Ito et al., 2011), the hydrological characteristics around the
fault would also have been changed by the earthquake.

3.2.3. Small landward-dipping normal faults in the northern edge of

the tsunami source area (Site 2W)

Small-scale normal faults are identified in the northern part of the
tsunami source area (Figs. 1b, 2c and d). At one buried landward-
dipping normal fault (Site 2W in Fig. 1b) where submersible surveys
were conducted both before and after the 2011 earthquake, we
confirmed the development of open fissures (Fig. 5d) not observed
before the earthquake (Fig. 5c), and which therefore likely resulted
from the earthquake. Because the seafloor is lower on the seaward
side of some of these fissures than on the landward side (Fig. 5d), the
fissures may have formed by gravitational failure (Kawamura et al.,
2012).

Heat flow of �54 mW/m2 at an open fissure above the buried
landward-dipping normal fault (Site 2W) measured just after the
earthquake in 2011 (Fig. 5e) was not much higher than the back-
ground value (Yamano et al., 2010). Furthermore, the heat flow
measured at this station (Fig. 5e and f) was almost the same in both
2011 and 2012 (Fig. 7c), suggesting that significant fault activity did
not occur at this location during the earthquake. The open fissure
may thus have been generated by small-scale seafloor slumping.

We measured a high heat flow value at a different measure-
ment location at Site 2W in August 2012 (Fig. 7c), but this
abnormal heat flow cannot be interpreted on the basis of only
one measurement. We plan to measure heat flow at this location
again in the near future to investigate further possible activity of
the buried normal fault.

3.2.4. Backstop interface at the outside of the tsunami source area

(Sites 1E and 2E)

At the backstop interface at the outside of the tsunami source
area (Site 1E in Fig. 1b; 391N), where submersible surveys were
conducted before the 2011 earthquake, open fissures (Fig. 6b and
d) that were not evident before the earthquake (Fig. 6c) were
identified during post-earthquake observations, and we assume
that they were generated during the 2011 earthquake. The heat
flow of 34–54 mW/m2 measured at the backstop interface after
the earthquake is not much higher than the background values
(Yamano et al., 2010). Furthermore, the heat flow values mea-
sured at the same site after the earthquake in 2011 and in 2012
(Fig. 6e and f) are very similar: 53.7 mW/m2 in 2011 (Fig. 6e) and
53.2 mW/m2 in 2012 (Fig. 6f) at the same small fissure, and
39.463 mW/m2 in 2011 and 38.68 mW/m2 in 2012 at the same
undisturbed seafloor location (Fig. 7d; Table 1). Therefore, the
earthquake rupture may not have propagated to the seafloor
along the backstop interface at this location. The open fissure may
instead be related to small-scale failure (e.g., seafloor landsliding).

During the post-earthquake observations at this location, we
observed ballast from the submersible Shinkai 6500 deployed
before the earthquake. The depth of the ballast was unchanged
between the pre- and post-earthquake observations. Note that
the depth accuracy of the manned submersible, as measured by a
Paroscientific Inc. SBT13000-I depth sensor, is 0.01%. This corre-
sponds to �0.53 m (¼5300 m�0.0001) in this region. By addi-
tionally considering the error caused by the tide in this region
(o1 m), the seafloor at this site could not have moved more than
1.5 m in the vertical direction during the 2011 earthquake. This
result is consistent with the seafloor deformation characterized
by tsunami inversion methods (Fujii et al., 2011).

At the backstop interface at Site 2E, which was not examined
before the earthquake (Fig. 1b), the deep-tow system detected
Calyptogena at the steep cliff (Fig. 6g), suggesting that seepage has
occurred along the backstop interface (i.e., fluid has been
squeezed from the underthrusting sequence). Although the steep
cliff was found to be overhanging in some places (Fig. 6h), we
could not find any clear seafloor deformation (e.g., open fissures)
associated with the 2011 earthquake.
4. Discussion

We have used both seafloor observations (Figs. 3–6) and fault
distributions interpreted on seismic reflection profiles (Fig. 2) to



Fig. 8. Schematic images of coseismic fault ruptures and the tsunami generation

model (a) at the northern edge (and outside) and (b) in the central part of the

tsunami source area. Soft slope sediments covering the continental crust are not

shown in these images. (a) Collapse of the continental framework occurred mainly

at the backstop interface north of the large tsunami source area. (b) Anelastic

deformation around the normal fault allowed large extension of the overriding

plate in the tsunami source area.
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assess the generation mechanisms of the huge 2011 tsunami. On
the basis of the post-earthquake seafloor observations, where
we observed open fissures at almost all observation points, we
have proposed anelastic deformation above the plate interface.
Furthermore, abnormal heat flow at a landward-dipping normal
fault suggests normal fault rupture in this region during the
2011 earthquake. These observations help us to understand the
mechanisms of tsunami generation.

Here we compare fault distributions in the central (line
MY102) and northern (lines MY101 and SR101) parts of the
tsunami source area in order to further investigate the character-
istic structures of the tsunamigenic region. Then, by considering
the large-scale structures on the seismic profiles together with
the results of the seafloor observations we infer the mechanism of
tsunami generation by the 2011 earthquake. Finally, we compare
our findings with other tsunamigenic convergent margins where
normal faults are preset.

4.1. Characteristic structures in the tsunami source area

Our repeated seafloor observations clearly demonstrate that
extensional features commonly observed in the erosional margins
were generated coseismically during interplate earthquakes (e.g.,
the 2011 the Tohoku-oki earthquake), as proposed by Wang and
Hu (2006). Because these coseismic extensional processes (which
resulted in the normal faulting and open fissures observed in this
study) collapse the margin framework into small fragments, they
play a vital part in erosion and mass wasting (e.g., von Huene
et al., 2004). On the seismic profiles (Fig. 2), we can recognize
fragmented continental units that, together with the soft sedi-
ments, are underthrusting beneath the continental crust along
with the subducting Pacific Plate. However, the characteristic
geologic structures and the fault distributions around the back-
stop interface are different between the central part (line MY102)
and the northern edge (and outside; lines MY101 and SR101) of
the tsunami source area (Figs. 1, 2, and 8).

At the northern edge (and outside) of the huge tsunami source
area (lines MY101 and SR101; Fig. 1), the continental crust is
collapsing in the transition zone between the frontal prism and
continental basement (i.e., at backstop interface) (Figs. 2a–d
and 8a). This transition zone can be identified from seafloor
bathymetry as a steep slope (yellow dashed line in Fig. 1b),
suggesting that the collapse of the consolidated continental
framework occurred mainly at the backstop interface.

However, on line MY102, where the huge tsunami was
generated during the 2011 earthquake, extensional faulting
around a large landward-dipping normal fault, �30 km landward
from the backstop interface (�40 km landward from the trench),
seems to collapse the continental framework and detach the
seaward frontal crust from the landward crust (Figs. 2f, g
and 8b). As a result of this extension, a basin structure has
developed on the landward side of the large normal fault
(Fig. 2f and g). Since the continental crust is being smoothly
displaced in the seaward direction by the movement of a series of
normal faults (i.e., dislocation planes), the continental crust on
the seaward side of the large normal fault is being continuously
re-distributed toward the seaward region close to the trench axis.
As a result, the backstop interface is near the trench (�10 km
from the trench axis) off Miyagi (line MY102), where the large
plate-boundary slip was generated. This feature, which is distinct
from the situation in the northern region, is clearly evident from
the seafloor bathymetry; in the tsunami source area, a steep
seafloor slope is not observed around the backstop interface
(yellow dashed line in Fig. 1b), suggesting that the extension
of the continental crust occurred gradually. Tsuru et al. (2002),
by examining many seismic reflection profiles across the Japan
Trench, previously showed that off Miyagi continental crust is
found close to the trench axis. In the tsunami source area off
Miyagi, where continental crust is close to the trench, the axis of
the Japan Trench exhibits a convex seaward curvature (Fig. 1). It is
possible that this curvature of the trench axis is related to the
gradual extension of continental framework associated with the
series of normal faults.

This interpretation is supported by the small number of after-
shocks that were observed within the frontal prism on the
seaward side of the large normal fault (Obana et al., 2012), which
suggests that the frontal part of continental crust moved seaward
without strain accumulation during the coseismic period. During
the interseismic period, in contrast, the presence of the continen-
tal crust near the trench may allow strain accumulation along the
plate interface; therefore, the presence of rigid basement rock
close to the trench may contribute to coseismic rupture near the
trench (Ryan et al., 2012).

The seaward extension of continental crust may be a char-
acteristic feature of tsunamigenic earthquakes. Kanamori and
Kikuchi (1993) suggested that the absence of sediments near
the trench (i.e., seaward extension of continental crust) allows the
slip to propagate all the way to the trench during a tsunamigenic
earthquake. Therefore, the existence of a large normal fault
that moves the continental framework seaward should be a key
structure characterizing rupture near the trench.

4.2. Dynamic tsunami mechanism of the 2011 earthquake

During most interplate earthquakes, the rupture generated at
the deep plate interface does not propagate to the trench, possibly
because of the presence of a soft sedimentary prism near the
trench (Kanamori and Kikuchi, 1993). As a result, seafloor uplift is



Fig. 9. Similar normal fault in the Kuril Trench, in the tsunami source area of the 1952 Tokachi-oki earthquake. (a) Index map. Red and blue areas indicate areas that

uplifted and subsided, respectively, during the 1952 earthquake (Hirata et al., 2003). White lines are the locations of seismic lines that image normal faults (Okamura et al.,

2008). (b) Landward-dipping normal faults observed in a time-domain seismic reflection profile acquired in the Kuril Trench (line HK101) (Nakanishi et al., 2004). The

location of this seismic profile is shown by a red line in panel (a). The linear ridge structure caused by normal fault displacement (yellow arrows in panel a) coincides with

the boundary of the uplift (red) and subsidence (blue) areas during the 1952 Tokachi-oki earthquake. The seafloor depth of the linear ridge is similar to the depth of the

seafloor ridge in the Japan Trench. (c) Detailed time-domain seismic profile around the seafloor trace of normal fault (red dots) in the Kuril Trench (line HK101).

(d) Detailed time-domain seismic profile around the seafloor trace of the normal fault (red dots) in the Japan Trench off Miyagi (line MY102).
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less and a smaller tsunami is generated in the rupture mechan-
ism. During the 2011 earthquake, however, the displacement
along the plate interface propagated to the trench axis (Fig. 8b)
(Ide et al., 2011; Fujiwara et al., 2011; Kodaira et al., 2012).
Furthermore, since the displacement near the trench was greater
than at the deeper plate interface (Ito et al., 2011), the normal
faulting and opening of fissures (anelastic deformation) observed
on the seafloor (Figs. 3–6) correspond to seafloor rupturing
caused by extension of the overriding plate (Tsuji et al., 2011).
Because anelastic deformation has collapsed the continental crust



T. Tsuji et al. / Earth and Planetary Science Letters 364 (2013) 44–58 57
framework around the large normal fault in the tsunami source
area (�30 km landward of the backstop interface; Fig. 8b), greater
extension of the overriding plate was possible, leading to the
greater slip (�60 m) along the plate interface near the trench.

This slip contributed significantly to the generation of the
tsunami, both because the seafloor slope was steeper on the
seaward side of the landward-dipping normal fault (Figs. 1 and 2;
Satake, 1994; Tanioka and Satake, 1996) and because the uplifted
deep seafloor near the trench (at �7 km depth) amplified the
height of the resultant tsunami (Ryan et al., 2012). Therefore, a
large horizontal movement of the steep seafloor near the trench
caused significant seafloor uplift and contributed to the displace-
ment of large volumes of water.

4.3. Other tsunamigenic earthquakes

Similar landward-dipping normal faults have been clearly
imaged on seismic profiles acquired along the Costa Rica–
Nicaragua (Ranero and von Huene, 2000; Ranero et al., 2000),
Chilean (Ranero et al., 2006), and Kuril (Okamura et al., 2008)
convergent margins. Because of extensional faulting, the conti-
nental frameworks are close to the trench axis along all of these
convergent margins, and in fact, tsunamigenic earthquakes (long
period, large displacements) have occurred at these convergent
margins: the 1960 Peru, 1963 and 1975 Kuril Islands, and 1992
Nicaragua earthquakes (Kanamori and Kikuchi, 1993). After-
shocks of tsunamigenic earthquakes in these subduction zones
also often have normal fault mechanisms (McKenzie and Jackson,
2012). Therefore, we expect normal faults causing extension of
the continental crust should be common structures in regions
where tsunamis are generated. Although the mechanisms pro-
posed in this study cannot explain all large tsunamis (e.g.,
tsunamis generated by seafloor slumping), the extensional fea-
tures (i.e., the seaward extension of continental crust) may
explain the huge tsunami that was triggered by the 1952 Mw
8.1 Tokachi-oki earthquake in the Kuril Trench.

In the Kuril Trench, the northern continuation of the Japan
Trench, a similar landward-dipping large normal fault manifests
as a continuous �500-m-high ridge on the seafloor (Nakanishi
et al., 2004; Okamura et al., 2008) (Fig. 9). The linear ridge
structure is at the seafloor slope break, as in the case of the Japan
Trench off Miyagi (Fig. 9c and d). In the Kuril Trench, seafloor
deformation near the trench also generated a huge tsunami
during the 1952 earthquake (Hirata et al., 2003). Because the
location of the large normal fault is coincident with the boundary
between the seaward uplift region and the landward subsidence
region associated with the earthquake (Hirata et al., 2003) (Fig. 9),
the huge tsunami may have been generated by mechanisms
similar to those that generated the 2011 tsunami. Because
of the normal faulting, the continental crust is close to the axis
of Kuril trench (Fig. 9). These findings suggest that the existence
of normal faults can be considered as one indicator of a huge
tsunami source area near the trench.

Because the seafloor on the landward side of the landward-
dipping normal fault subsided during the 1952 Tokachi-oki earth-
quake (Hirata et al., 2003), we suggest that the primary mechan-
ism that generated the huge tsunami during that event was large
displacement along the plate interface near the trench caused
by the release of gravitational potential energy (McKenzie and
Jackson, 2012; Fig. 9c).
5. Summary

The seafloor morphology and environment off Miyagi where
the large plate-boundary slip was generated underwent dynamic
changes during the 2011 Tohoku-oki earthquake, particularly in
proximity to the seafloor traces of an extensive fault system
interpreted on seismic reflection profiles. Open fissures and high
heat flow observed at large normal fault indicate considerable
extension of the overriding plate, leading to a large rupture along
the plate interface near the trench. Since extensional faulting
within the region of tsunami generation occurred far landward
from the backstop interface, the continental crust actually
extends to close to the trench axis. These features are distinct
from the features observed outside the tsunami source area.

Similar extensional structures are commonly seen at other
convergent plate margins where tsunami earthquakes have been
generated. In the Kuril Trench, a similar landward-dipping normal
fault that moves the continental framework seaward is observed
between the middle and lower trench slope. The seaward exten-
sion of continental crust can explain the tsunami generated there
by the 1952 Tokachi-oki earthquake. Therefore, fault system
characteristics (i.e., landward-dipping normal faults) and geolo-
gical structures within the overriding plate (i.e., continental crust
close to the trench) are keys to identifying regions along con-
vergent margins where huge tsunamis might be generated.
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