Frequency dependent operating mode of a coaxial thermoacoustic Stirling heater/cooler

We have constructed a travelling wave thermoacoustic refrigerator using a coaxial configuration with the regenerator positioned in the annulus. Tests were conducted using frequencies ranging from 100 Hz to 400 Hz . Within this range, a frequency dependent positional reversal of the cold section and hot section of the regenerator within the test range was discovered. Using an input electric power of 38 W , the largest temperature differences obtained were 39.0 C and -21.3 C , at frequencies 120 Hz and 380 Hz respectively, with the change in sign indicating a change in regenerator temperature gradient. Decomposition of the pressure wave within the annulus, obtained the positive (w_{+}) and negative (w_{-}) propagating travelling waves and SWR. A different sign of SWR and change of dominant travelling wave direction was observed between the operating frequencies of 120 Hz and 380 Hz indicating a correlation between the dominant travelling wave direction and the regenerator temperature gradient. As the temperature gradient reversal does not require moving parts, only a change in frequency, this feature in coaxial traveling wave devices has tremendous potential for applications which require both heating and cooling operation.

