
CO₂ capture by polymeric membranes: from bench to demonstration

Ikuo Taniguchi, Ph.D.

Multiscale Science and Engineering for Energy and the Environment, International Institute for Carbon-Neutral Energy research (WPI-I²CNER)

Membrane separation holds potential as an alternative technology of liquid amine scrubbing in CO_2 capture, and a number of CO_2 separation membranes with excellent gas transport properties have been developed over the last two decades. However, only a few membranes have reached demonstration level, and CO_2 separation membranes have not been commercialized except from the triacetyl cellulose membranes for natural gas sweetening. There are two major roadblocks for implementation of CO_2 separation membranes: membrane module preparation and demonstration with actual target gas.

In this work, CO_2 separation by membranes over H_2 has been investigated for pre-combustion CO_2 capture at an integrated gasification combined cycle plant. It is demonstrated that aminecontaining polymeric membranes are suitable for the separation, and a required CO_2 permeability has been obtained. Herein, a new amine family is introduced to improve the CO_2 selectivity. Besides the pre-combustion CO_2 capture, we have been looking for other opportunities of CO_2 separation because the membrane materials we developed display very high CO_2 separation performance. Lastly, facile preparation of a hollow fiber membrane module was established for demonstration. Some recent updates will be shown in this presentation.

A cross sectional SEM image of the CO₂-selective layer on a hollow fiber (left) and the hollow fiber membrane modules developed (numbers denote effective membrane area.)