CO₂-hydrogenation into formate by the membrane-bound enzyme complex Ki-Seok Yoon, Associate Professor Catalytic Materials Transformations Research Division H_2 is an effective energy carrier with a high energy density per molecule. Therefore, we are particularly interest in the biochemical reaction of H_2 -dependent reduction of CO_2 into formate, because formate is greenhouse gas sequestration and can easily store energy as a renewable liquid hydrogen energy carrier. However, most biocatalysts to perform CO_2 -hydrogenation are highly O_2 -sensitive, which is bottleneck for biotechnical application. To resolve this difficult issue, we have found a number of new O_2 -stable [NiFe]hydrogenases and determined the structural basis for the catalytic mechanism of H_2 and O_2 molecules¹⁻³⁾. In this study, we constructed an efficient system for H₂-dependent CO₂ reduction into formate using the immobilized bacterial membrane on carbon black. Because a [Mo]-formate dehydrogenase (FDH_{S77}) and a [NiFe]-hydrogenase (NiFe_{S77}) from our isolated bacterium *Citrobacter* sp. S-77 displayed high catalytic activity with remarkable O₂-stability^{4,5}). In fact, the fabricated polymer electrolyte fuel cell (PEFC) using the purified NiFe_{S77} as an anode catalyst, displaying its power density over 647-times superior for H₂-oxidation than that of a platinum catalyst in the PEFC⁶). Intriguingly, our recent **Scheme 1**. Biochemical system for the reversible reaction of H₂-dependent CO₂ reduction into formate by an immobilized bacterial enzymes onto carbon black. structural analysis revealed that an amino acid of Asp81 near a proximal [4Fe-4S] cluster plays a key role in its catalytic activity for H₂-oxidation and O₂-tolerance⁷⁾. The immobilized FDH_{S77} and NiFe_{S77} onto carbon black lead to elevate the reversible activity for H₂ production from formate and H₂-dependent CO₂ reduction into formate (**Scheme 1**). Notably, the H₂ production can occur even in the presence of air environment. To our future studies, we will construct a high efficiency biological system for CO₂-hydrogenation into formate by the homogeneously purified FDH_{S77} and NiFe_{S77} immobilized onto carbon black. On the basis of our findings, I will present the structural and functional insights into the biochemical CO₂-hydrogenation into formate with robust biocatalysts for Carbon-Neutral Energy Research. ## References worked by author; ¹⁾Yoon KS, et al., Int. J. Hydrogen Energy., **36**, 7081 (2011); ²⁾Shomura Y, et al., Nature, **479**:253-256 (2011); Shomura Y., et al., Science, **537**, 928 (2017); ⁴⁾Eguchi S, et al., J. Biosci. Bioeng., **114**:479-484 (2012); ⁵⁾Nguyen NT, et al., J. Biosci. Bioeng., **118**:386-391 (2014); ⁶⁾Matsumoto T, et al., Angew. Chem. Int. Ed. Engl., **53**:8895-8898 (2014); ⁷⁾Noor NDM, et al., Chem. Commun. **54**:12385-12388 (2018).