Heteroepitaxial Growth of High-Quality and Impurity-Free (00.1) CuFeO₂ Thin Films on Hexagonal (00.1) Sapphire and Cubic (100) SrTiO₃ Substrates by Pulsed Laser Deposition

Sijun Luo, Post-doctoral Research Associate

Molecular Photoconversion Devices Research Division, I²CNER, Kyushu University

Abstract:

Recently, Cu⁺¹Fe⁺³O₂ thin films attract increasing research interests as a promising p-type narrow-band-gap semiconductor for potential application as thin film photocathode in solar water splitting cell for hydrogen production. High-quality and impurity-free CuFeO₂ epitaxial thin films would be preferable for fundamental studies on the physical and chemical properties. However, the heteroepitaxial growth of impurity-free CuFeO₂ thin films has been a significant challenge owing to its narrow formation window in Cu-Fe-O system as well as the metastable nature of the Cu¹⁺ cations. This work reports for the first time the fabrication and characterization of high-quality and impurity-free (00.1)-oriented CuFeO₂ epitaxial thin films grown on hexagonal (00.1) sapphire and cubic (100) SrTiO₃ substrates by using pulsed laser deposition. This study provides an insight into the heteroepitaxial growth of CuFeO₂ thin films with high purity and crystalline quality as an ideal sample design to characterize the fundamental properties of this material in view of potential device application.

References

1. S. Luo, A. Fluri, S. Zhang, X. Liu, M. Dobeli, G. F. Harrington, R. Tu, D. Pergolesi, T. Ishihara, and T. Lippert. Thickness-Dependent Microstructural Properties of Heteroepitaxial (00.1) CuFeO₂ Thin Films on (00.1) Sapphire by Pulsed Laser Deposition. *Journal of Applied Physics*, **127**, 065301 (2020).

2. S. Luo, G. F. Harrington, D. Pergolesi, T. Ishihara, and T. Lippert. Heteroepitaxial Hexagonal (00.1) CuFeO₂ Thin Film Grown on Cubic (100) SrTiO₃ Substrate by Pulsed Laser Deposition. (2020) In preparation