EnergyOutlook

International Institute for Carbon-Neutral Energy Research

炭素のサイクルから水素のサイクルへ

~すぐそこまで来た近未来エネルギーへの転換を加速する~

1859年、アメリカ・ペンシルバニア州で石油が掘り当てられた。これ以降、人類と石油の蜜月時代が始まる。 その後約 150 年間、我々は石油から膨大な恩恵を受けてきたけれども石油は諸刃の剣。 いま世界に、資源枯渇問題と地球温暖化問題を突きつけている。

近未来のクリーンなエネルギー媒体、「水素」への転換は、どう進めれば良いのだろうか。

る関心が芽生えました。1974 ショックにより、 杉 は 十代で経験したオイル エネルギーに対す

す

何としても世界で唯

サムライが集まる梁山 燃料電池や水素に関わる

電池』 出会いです。面白い技術だと思いま 安藤晴彦(以下・安藤) のでしょうか。 燃料電池や水素に関わることになっ た、そもそものきっかけは何だった 杉村丈一(以下・杉村) 大学生時代に書店の本棚で『燃料 を見かけて読んだのが最初 安藤先生が 1 9 8 4

断られたのに、

いつの間にか I²CNER

にいらっしゃる(微笑)。燃料

1

志を持つサ

ムラ 電池

を進める施設造りに奔走されたので 迫られたのです。 そこで材料としての水素研究

たのを受けて、

日本も早急な対応を

な水素燃料

電 に並 池

自

動 車

. の 開 発で

0)

先頭

一つ」と打ち上

年

頭 <u>の</u>

般教書演説で「クリーン

となりました。ブッシュ

大統

領

就任し、燃料電池と国際戦略の担当

資源エネルギー庁の新設の企画官

うになったのは2003年からです。 や水素に興味を持ちました。 仕事として燃料電池と関わるよ まだ学生でしたが太陽光発雷

Haruhiko $\overline{A}ndo$ 安藤 晴彦 -橋大学 特任教授 兼 資源エネルギー PJ ディレクター 電気通信大学 客員教授 RIETI コンサルティングフェロー EnergyOutlook 01

にも、 のお力が欠かせないと考えました。 るわけですが、そのためには日本で センター 水素材料先端科学研究センター(現 伺いました。 技術研究所におられた秋葉悦男先生 水素研究が最も進んでいた九州 と。これが後の産業技術総合研究 水素先端材料の研究機関を創るんだ 州大学水素材料先端科学 安藤さんが勧誘に行かれたと 大雪の日に伺ってやんわりと 茨城県つくば市の産業総 (HYDROGENIUS)) とな 研

^ンシャイン計画 がスタートした時

それが I²CNER だと納得しました。 研究者が自然に集まってくる場

なポジションにあります。日本で

が、

ネルギー媒体として、

極めて重要

エネルギー危機と 今そこにある 救世主としての水素

ださ です の位 水素時代 す。これに備えて、今年度から水素 燃料電池自動車が市場投入され ステーションの整備が本格化 V ょ 改めて水素エネルギ 0) け 1 幕開けを迎えるわ に よ2015年 つ () てお聞 か せ か ま 5

水素

は

クリ

ĺ

ンな近未来

 σ

計画停電に陥りかねません。 を踏まえるなら、たちまち日本中が 原子力発電所も停止している現状 輸送がほぼストップするでしょう。 原油輸入の生命線となるホルムズ はあまり知られていませ にあります。万一、ここが封鎖さ 候峡は、 れば日本への原油・天然ガス イラン問題で危機的状況

替わるエネルギー開発は、 なっている。石油や天然ガスに ね。それでなくとも発電用の燃料費 とは、ほとんど認識されていません そこまで切羽詰まった状況だ 日本の貿易収支は赤字に 日本に

> があります 首相が進めている「デザーテック計画 確保です。例えば、ドイツのメルケル とって喫緊の課題です。 エネルギーの安全保障を考え

杉村 北アフリカのサハラ砂漠で ですね。 まで引っ張ってくる壮大なプラン 太陽光発電を行い、その電力をドイツ

セ なって実に52兆円もの投資を企 安藤 天然ガスの途絶に対するエネルギー だけではない。ロシアに依存す ています。しかも環境先進国であ ながら、その主目的は CO2削減 欧州と北アフリカ が 体と

最も重要な論点は多様性の 北

最 が

キュリティ確保こそが第一で

第 収後です 水 アフリ 資 源 大型 力経 0) 創 投 済 出 資 0) に 活 よる 性 CO2削 化、 欧 減 第 州

炭素のサイクルから 求められる 水素のサイクルへの転換

す。水素の入手方法については、 お考えでしょうか。 水素は間違いなくキーファクターで エネルギーセキュリティ上、

水素をトルエンに添加し、 の余剰水素を活用しますが、世界中 建設します。当面は中東や東南アジア 東京湾にクリーンな水素発電所 デモプラントを既に自力で作 のタンカーで常温・常圧で運べます。 「カーボンフリー水素」が視野に入り 大な未活用水力・風力から 発済みです。触媒 画期的技術を日 を 本 使 企 通 業 7

材料の水素脆化など悩まし のインフラ整備をどう進めていく 水素を貯蔵するタンクや配管など 。我々の研究テーマの一つ、 まだいくつか課題があります ただ、 水素普及を進める上で 1 金属

があります。

Special Interview

安藤 5 重要課題だと考えています が、 に れているとは言えないのが現状です 水素の物性自体なども十分に解明さ は少し前向きに変わられたようですが。 は3回まで」と否定的でした。ご退任前に しなければならず、 燃料電池という4つの課題を同時解決 あるスティ 品の 実現には製造、 ゆる研究領域に横断的 ております。 取 素の ここ九州大学にあります。 人類の未来のために解決 組む世 九州大学のご奮闘に大いに期待 水素脆化のほか、 材料特性やトライボロジー、 問題は、 1 省長官は、 ベル 1 界 ブン・ 。水素問 物理学賞受賞者でも 貯蔵、 で唯 「天使だってミラクル 日本の チ 題 供給インフラ、 シールなどの 無 ユ か に ためではな 関 燃料電池 <u>ー</u> 総合的 はするあ 前 す ラボ 米 き 玉

求めること 今後のI°CNERに

まず安全性 せていくには、どんな課題があるでしょうか。 ためには経済合理性も併せて考慮す 。そこで考 今後、 利 、き安全性のレ 便 です えなければならないのは、 性 燃料電池を一 般に普及させてはならな 。安全性 経 済 性 ベルです 般家庭に普及さ が確保されな を語る前 ^。普及

> ごとの が 杉 こしくなります 2必要に 思惑が絡んでくると話 な線引が求められます 安全性に関する国際的 なるわけです が、 そこに がや な基準

ることが必要です。安全性に関す

る

理解が I²CNER も具現化されまし 社会実現に向けた取 HYDROGENIUS そ HYDROGENIUS 0) 基準を予め用意しておく。その国際標準 クリアするためにサ 杉 サ 安 に世界のコアとして活躍されています ノイエ 一礎を作る世界的機関とし 藤 L て、 ベースとなります。九州大学は、 ンティストによる世 玉 玉 際標準をまとめ 材 ベル 料 問 を構想され 0) に 題 価 加えて、 イエンスによる 値観 り を 組み 研 0) る 界共 て 究 違 を 低 際 す 炭 に 行 ま 1) 通 既 る は

イメー 杉村 安藤 る機会も う べて高す に 通理 な 向 ħ けた合理 水 0) ジを払拭することも、 解があれば、 学の 日 ば 義務です 素に対するネガテ ぎるという話もあり 本の規制レベル 一気に広がるでし 日 本 目 化が進むはずです 企業が世界で活 で合意した世 ね いず れそのライン が世 よう。 イ . 界 私たち 界と比 的 ま 躍

学的 離 して議 な問 安 心 題 は情緒的 論する必要があります。 であ り な問 0) 題 2 つつは 安全

世

勝

負

できる研

究者を育

てるこ

1) コ 着 若 杉

ま

恵

ま

れ

た

環

を

活

か

ースモポ

IJ

タン

な

雰 境

囲気に満ちて

者

1です。

I²CNER

には は

か

未来を創る

0)

間違

1)

なく

任

L

7

1)

る

研

究

者

ŧ 海

多 外

<

と、これが我々の義務と心得ています

0 科

> りません。けれども隣の家がエネファー は、 から安心しなさいといっても説得力があ だ使ったこともない人に、 エネファー 杉 L 水 小 いプロ 素戦 村 置 Ш 県 水素の安全性を訴 洋 略 0) 知 モーションだと思います 麻生渡前知事がリー 般家庭への普及を考えれば、 (Hy-Life 事 ムの存在も大きいですね。 が引 き プロ 継 求する素晴 が 水素は安全だ ジェ れ た ドされ、 クト) 福岡

き裂進 安藤 ただきたいと願っ を、 までの 1) 続 最 込 に 7 は うした普及活動の一方で、I²CNER 経済産業省も力を入れており、 を使っていれば、安心を実感できます。 ですし、 き世 先端 解明 () ぜ む どんどん世界に送 ただきたいの S 必 工 するには、 展 普及は見込まれています。 界 0) 最 要 ーネファームには、 をリー 先端研究を強力に 水 そのため 延性破壊 ŧ 素研究に 出 てくるで ドして 量 7 です。水 などの問題 にも若い研 子力学まで踏 V 関し ます ŋ V 出 ただきた て、 産業界も L 素 推 8 l ょ 脆 究者 引 を更 7 進 う 性 き

橋大学 特任教授 兼資源エネルギー PJ ディレクタ-電気通信大学 客員教授 RIETI コンサルティングフェロー

1985 年東京大学法学部卒業後、通産省入省。 2001 年内閣府企画官(経済財政)、2003 年資 源エネルギー庁企画官(国際戦略・燃料電池 担当)、2004 年燃料電池推進室長、2005 年新 エネルギー対策課長、2008 年内閣府参事官 (科学技術)、2010 年内閣参事官(知的財産) などを経て、2012年から現職。

杉村 丈一

九州大学力--ボンニュートラル・エネルギー国際研究所 水素適合材料研究部門 主任研究者 教授 九州大学水素材料先端科学研究センター長

1981 年東京大学工学部航空学科卒業、1983 年東京大学大学院工学系研 究科航空学専門課程修士課程修了、1986 年東京大学大学院工学系研究 科航空学専門課程博士課程修了後、九州大学工学部講師、1988 年同助教 授、2004年同大学院工学研究科教授。2006年から、(独)産業技術総合研 究所水素材料先端科学研究センター (HYDROGENIUS) の水素トライボ ロジー研究チーム長を兼務。2010年九州大学 カーボンニュートラル・ エネルギー国際研究所(I°CNER) 主任研究者を兼務。2013 年から現職。

熱活性化遅延蛍光を利用した 高効率有機発光ダイオードの 有望な動作安定性

Hajime Nakanotani, Kensuke Masui, Junichi Nishide, Takumi Shibata, Chihaya Adachi Scientific Reports, 3, 2127, P.1-5 (2013) DOI: 10.1038/srep02127

機発光ダイオード(OLED)は、高い EL 効率、

フレキシビリティー、低コスト製造が見込まれるこ とから、次世代ディスプレイや照明用途として魅力的 な発光デバイスである。最近、熱活性化遅延蛍光(TADF)過程 により発光する材料を用いて高効率な OLED を実現する新しい 手段が実証された。しかし、TADF 過程で発光するデバイスに 信頼性があるかどうかは不明であった。今回、我々は、キャリア 再結合位置を制御することによって、トリス(2-フェニルピリジナト) イリジウム (III) を用いた従来のリン光 OLED に匹敵する耐久寿命 が得られることを実証した。この結果は、TADF が電気励起下に おいて本質的に安定であることを示しており、今後、周囲材料を 最適化していくことによって、デバイスの信頼性はさらに向 上すると期待される。

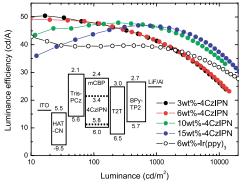


図 1. TADF-OLED の発光特性

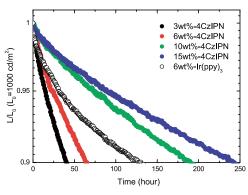


図 2. TADF-OLED の輝度減衰特性

高圧水素ガス用 耐水素透過皮膜

Junichiro Yamabe, Saburo Matsuoka, Yukitaka Murakami

International Journal of Hydrogen Energy, 38, P.10141-10154(2013) DOI: 10.1016/j.ijhydene.2013.05.152

アルミ系二層皮膜(アルミナ/ Fe-Al 合金)とアルミ系三層皮膜(アルミナ /アルミニウム/ Fe-Al 合金) を基材 (SUS304) の 全面に形成した。皮膜試験片を圧力 10~ 100 MPa, 温度 270 ℃の水素ガス中に 200時間曝露し、皮膜の 耐水素侵入特性を調査した。アルミ系二層皮膜では、 水素ガス圧力の増加に伴い、皮膜の耐水素侵入特性 は低下した。これに対して、アルミ系三層皮膜では、 圧力 10~ 100 MPa において、優れた耐水素 侵入特性を示した。

自の配合を施したアルミ合金を用いて、

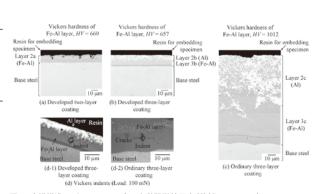


図1.皮膜構造とビッカース圧痕の光学顕微鏡写真(基材:SUS304)。 アルミナ層は薄い $(\sim 1 \text{ nm})$ ため、光学顕微鏡では観察できない。 純アルミニウムを用いた皮膜と比べて、独自の配合を施した皮膜は薄く、皮膜を構成す る Fe-AI 合金層の靭性が高い。

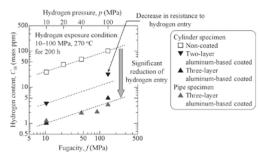


図 2. 水素侵入量(C_H)とフガシティー(f)の関係。アルミ系二層皮膜とアルミ系三層皮膜 を全面に付与した円柱試験片(基材: SUS304)とパイプ試験片(基材: SUS304)を 圧力 10 ~ 100 MPa、温度 270 ℃の水素ガス中に 200 時間曝露し、皮膜の耐水素侵入 特性を調査した。

化学的膨張と ホスト陽イオン半径に対する依存性

Dario Marrocchelli, Sean R. Bishop, John Kilner

J. Mater. Chem. A, 1, P.7673-7680(2013) DOI: 10.1039/c3ta11020f

極の格子欠陥(化学的膨張)は、触媒 作用を利用している固体酸化物形燃料 電池 (SOFC) の電極および酸素吸蔵材 のようなエネルギー関連材料の破壊の原因に

なりうる。我々は、酸素欠陥の周囲の緩和 パターン (図 1) における蛍石型立方晶構造 の酸化物によるホスト陽イオン・イオン半径(rh) の機能を調べた(図2)。計算的アプローチに より、酸素空孔周辺の格子緩和は、陽イオンサイズに 著しく依存することを示した。空孔緩和が、酸素 イオン伝導性におよぼすインパクトについて 考察した。

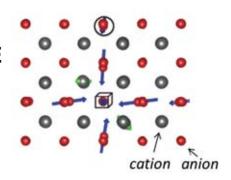


図1. ZrO2における空孔周囲のイオン緩和

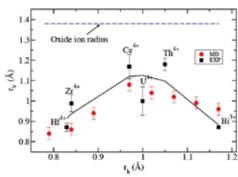
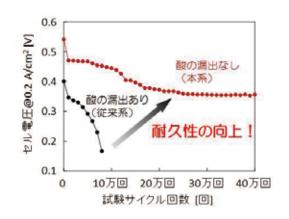


図 2. 酸素空孔半径が Ce⁴*の近くで最大


ポリビニルホスホン酸を ドープしたポリベンズイミダゾールからなる 超高耐久性の高温型固体高分子形燃料電池開発

Mohamed R. Berber, Tsuyohiko Fujigaya, Kazunari Sasaki, Naotoshi Nakashima

料電池の低コスト化のために、高

SCIENTIFIC REPORTS 3: 1764 P1-7(2013) DOI: 10.1038/srep01764

・無加湿運転が必要である。ポ リベンズイミダゾール (PBI) にリ ン酸を含浸した電解質は高温無加湿でも水 素イオンを輸送するため有望であるが、液体リ ン酸の漏出により劣化が生じる。そこで、リ ン酸に替えて固体のポリビニルホスホン酸を 導入した新規電極触媒および電解質膜を開 発し、リン酸使用時より飛躍的な耐久性向上を 実現した。現行触媒を使った燃料電池と比較 し、100倍以上の耐久性を達成した。

開発した燃料電池の耐久テスト結果。 (赤)ポリビニルホスホン酸を用いた燃料電池、(黒)リン酸を用いた燃料電池。

メタルボロハイドライドの 水素再吸蔵特性に関する比較研究

Hai-Wen Li, Etsuo Akiba, Shin-ichi Orimo

Journal of Alloys and Compounds, in press (2013) DOI: 10.1016/j.jallcom.2013.03.264

密度水素貯蔵材料として期待される Mg(BH4)2と Ca(BH4)2 において、40 MPa の 水素を用いた水素再吸蔵特性の比較を

実施した。473 K の比較的低い水素再吸蔵温度でも Mq(BH₄)₂の生成が確認され、再吸蔵温度の上昇に伴い 水素再吸蔵量が増加し、673 K で最大値(7.6 質量%、 51% の Mg(BH₄)₂に相当)となった。一方、Ca(BH₄)₂では、 90% 以上の水素再吸蔵量が確認され、Mg(BH4)2より 優れた水素再吸蔵特性を示した。両者の水素放出・ 再吸蔵特性の比較から、水素放出生成物の制御が 再吸蔵特性を向上させるために重要なアプローチで あると示唆される。

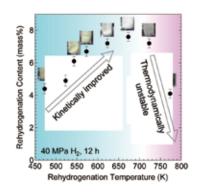


図1. Mg(BH₄)₂における水素再吸蔵量の温度依存性

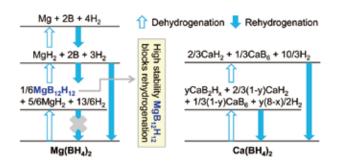
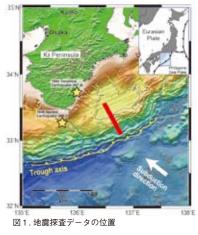


図 2. Mg(BH₄)₂および Ca(BH₄)₂の水素放出・再吸蔵反応


海底地震計データへの 波形トモグラフィの適用: 高精度化に向けた手法開発

R. Kamei, R. G. Pratt and T. Tsuji

Geophys. J. Int., 194, P.1250-1280(2013) DOI: 10.1093/gji/ggt165

の変化を利用することが有効であることから、 弾性波速度を高解像度に推定することが求められ ている。我々は波形トモグラフィとよばれる手法を改良する ことにより、深部の弾性波速度を超高解像度に推定すること を可能にした。本手法を南海トラフの海底地震計データに 適用した結果、深部地震断層周辺の弾性波速度構造を高精度 に推定することに成功した。推定された弾性波速度構造から、 深部地震断層やプレート境界の位置が初めて明らかになり、 これまでの巨大地震断層の解釈が見直された。

入 CO2をモニタリングする際には、地下の弾性波速度

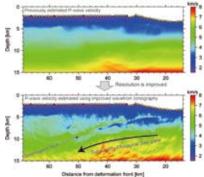


図2. これまでの弾性波速度(上)と本研究で推定した弾性波速度(下)

Event 01

International Symposium on Innovative Materials for Processes in Energy Systems (IMPRES) 2013

2013年9月4日(水)から9月6日(金)の3日間、 カーボンニュートラル・エネルギー国際研究所(I²CNER)に おいて「International Symposium on Innovative Materials for Processes in Energy Systems (IMPRES) 2013」が開催されました。このシンポジウムは、 エネルギー変換における多相プロセスの様々な側面 に着目し、研究分野を超えた活発な意見・アイディア の交換を促進することを目的として開催されていま す。IMPRES は、2007年に京都、2010年のシンガポールに 続き、今回で3度目の開催となりました。実行委員長 を 髙田保之教授 (副所長、熱科学研究部門長) が務 め、各分科会・ポスターセッション等を催しました。 180 名以上の国内外の研究者・学生が参加し、 大盛況のうちに閉会しました。

02

Catalytic Concepts for Energy

2013年9月13日(金)、米国イリノイ大学アーバナ・ シャンペーン校において I²CNER サテライトが主催した 「Catalytic Concepts for Energy」を開催しました。こ のシンポジウムは、触媒を利用したエネルギーについ て、最新の研究成果を発表することを目的としており、 英国オックスフォード大学 Fraser Armstrong 教授の 基調講演をはじめ、米国内外の著名な研究者が講演し ました。I²CNER からは中嶋直敏教授(燃料電池研究部門 主任研究者)、Aleksandar Staykov 助教(水素製造研究

部門)、松本崇弘助教(触媒的 物質変換研究部門)が参加し、 I²CNER での研究実績を発表し ました。参加した 50 名以上の 研究者・学生は、活発な質疑応答、 意見交換を行いました。

第67回(平成24年度) 日本セラミックス協会学術賞

石原 達己

(副所長 水素製造研究部門長 主任研究者)

「ペロブスカイト類縁化合物のイオン伝導性 と燃料電池への応用」の研究成果が、 セラミックスの科学・技術に関する貴重な 研究であり、その業績が特に優秀であるとし て、学術賞を受賞しました。

Awards

第10回 本多フロンティア賞

堀田 善治 (水素貯蔵研究部門 主任研究者)

第39回(平成24年度) 敬二 田中

(水素製造研究部門)

「固体界面における高分子の凝集状態と 熱運動特性に関する研究」の研究成果が、 繊維科学において独創的で優秀な研究であ り、今後の研究の発展が期待されるとして、 学会賞を受賞しました。

「巨大ひずみ加工による高性能材料の創製」の研究成果が、金属材料などの無機材料、 有機材料及びこれらの複合材料の分野で学術面・技術面において画期的な発見・ 発明を行ったとして、本多フロンティア賞を受賞しました。

2012-2013 Hydrogen Student Design Contest Grand Prize

誠一郎 ポスドク研究員 (エネルギーアナリシス研究部門)

本学大学院工学府水素エネルギーシステム専攻の修士課程の 学生が、Hydrogen Education Foundation が主催する Hydrogen Student Design Contest で Grand Prize (最優秀賞) を受賞しました。木村ポスドク研究員はアドバイザーとして 参画し、チームの受賞に貢献しました。

日本物理探査学会

健 辻

(CO2貯留研究部門長 主任研究者)

日本物理探査学会の会誌に発表した「Global optimization by simulated annealing for common reflection surface stacking and its application to low-fold marine data in southwest Japan」が、若手会員の論文等の中でも特に今後の 研究成果が期待されるとして、奨励賞を受賞しました。